Root > Applications > Cell Selection & Expansion > Manual cell selection > References about Fab and MHC I Streptamers

Fab Streptamers for selection of lymphocytes

CAR T cell enrichment
  1. Sabatino, M.; Hu, J.; Sommariva, M.; Gautam, S.; Fellowes, V,; Hocker, J.D.; Dougherty, S.; Qin, H.; Klebanoff, C.A.; Fry, T.J.; Gress, R.E.; Kochenderfer, J.N., Stroncek, D.F. Ji, Y. and Gattinoni, L.  (2016) Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies Blood DOI 10.1182/blood-20105-11-683847 [Link]
Serial positive enrichment / multiparameter cell sorting
  1. Klebanoff, C.A.; Scott, C.D.; Leonardi, A.J.; Yamamoto, T.N.; Cruz, A.C.; Ouyang, C.; Ramaswamy, M.; Roychoudhuri, R.; Ji, Y.; Eil, R.M.; Sukumar, M.; Crompton, J.G.; Palmer, D.C.; Borman, Z.A.; Clever, D.; Thomas, S:K.; Patel, S.; Yu, Z.; Muranski, P.; Liu, H.; Wang, E.; Marincola, F.M.; Gros, A.; Gattinoni, L.; Rosenberg, S.A.; Siegel, R.M. and Restifo, N.P.  (2015) Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest. doi:10.1172/JCI81217 [Link]
  2. Stemberger, C.; Dreher, S.; Tschulik, C.; Piossek, C.; Bet, J.; Yamamoto, T. N.; Schiemann, M.; Neuenhahn, M.; Martin, K.; Schlapschy, M.; Skerra, A.; Schmidt, T.; Edinger, M.; Riddell, S.; Germeroth, L. and Busch, D.  (2012) Novel serial positive enrichment technology enables clinical multiparamenter cell sorting. PLoS One7 (4), 1-11 [Link]

MHC I Streptamers for selection of antigen-specific CD8+ T cells

Streptamer® Technology: Reversibilty preserves cell functionality
  1. Ciaurriz, M.; Beloki, L.; Bandres, E.; Mansilla, C.; Zabalza, A.; Perez-Valderrama, E.; Lachen, M.; Ibanez, B.; Olivarria, E. and Ramirez N. (2016) Streptamer technology allows accurate and specific detection of CMV-specific HLA-A*02 CD8+ T cells by flow cytometry. Cytometry: Part B - Clinical Cytometry [Link]
  2. Cioni, M., Leboeuf., C., Comoli, P., Ginevri. F. and Hirsch, H.H. (2016) Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses. American Journal of Transplantation 16: 1193-1206 [Link]
  3. Govers, C.; Berrevoets, C.; Treffers-Westerlaken, E.; Broertjes, M. and Debets, R. (2012) Magnet-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells. Human Gene Therapy Methods 23: 213-224 [Link]
  4. Knabel, M., Franz, T.J., Schiemann, M., Wulf, A., Villmow, B., Schmidt., B., Bernhard, H., Wagner, H. and Busch, D. (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nature Medicine 8 (6), 631-637. [Link]
  5. Neudorfer, J., Schmidt, B., Huster, K.M., Anderl, F., Schiemann, M., Holzapfel, G., Schmidt, T., Germeroth, L., Wagner, H., Peschel, C., Busch, D. and Bernhard, H. (2007) Reversible HLA multimers (Streptamer) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. JIM320, 119-131. [Link]
  6. Odendahl, M.; Grigoleit, G.U.; Bönig, H.; Neuenhahn, M.; Albrecht, J.; Anderl, F.; Germeroth, L.; Schmitz, M.; Bornhäuser, M.; Einsele, H.; Seifried, E.; Busch, D. H. and Tonn, T. (2014) Clinical-scale isolation of ‘minimally manipulated’ cytomegalovirusspecific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy 16 (9), 1245-1256 [Link]
  7. Schober, K. and Busch D.H. (2016) TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. European Journal of Immunology 46: 1335-1339 [Link]
  8. Tarnok, A. (2016) OMIPs start school. Cytometry Part A 89A: 795-796 [Link]
  9. Wang, X-C., Pang, H., Schmitt, A., Freund, M., Schmitt, M. and Chen B.-A. (2013) Streptamer versus tetramer-based selection of functional cytomegalovirus-specific T cells. Journal of the Formosan Medical Association112: 338-354 [Link]
  10. Zhang, S.-Q., Parker, P., Ma, K.Y., He, C., Shi, Q.,Cui, Z., Williams, C.M., Wendel, B.S., Meriwther, A.I., Salazar, M.a. and Jiang, N. (2016) Direct measurment of T cell receptor affinity and sequence from naive antiviral T cells. Immunology 8 (341): 1-8. [Link]
Streptamer® Technology: MHC I Streptamers® versus Pentamers and Tetramers
  1. Ciaurriz, M.; Beloki, L.; Bandres, E.; Mansilla, C.; Zabalza, A.; Perez-Valderrama, E.; Lachen, M.; Ibanez, B.; Olivarria, E. and Ramirez N. (2016) Streptamer technology allows accurate and specific detection of CMV-specific HLA-A*02 CD8+ T cells by flow cytometry. Cytometry: Part B - Clinical Cytometry [Link]
  2. Cioni, M., Leboeuf., C., Comoli, P., Ginevri. F. and Hirsch, H.H. (2016) Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses. American Journal of Transplantation 16: 1193-1206 [Link]
  3. Govers, C.; Berrevoets, C.; Treffers-Westerlaken, E.; Broertjes, M. and Debets, R. (2012) Magnet-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells. Human Gene Therapy Methods 23: 213-224 [Link]
  4. Wang, X-C., Pang, H., Schmitt, A., Freund, M., Schmitt, M. and Chen B.-A. (2013) Streptamer versus tetramer-based selection of functional cytomegalovirus-specific T cells. Journal of the Formosan Medical Association112: 338-354 [Link]
  5. Zhang,S.-Q., Parker, P., Ma, K.Y., He, C., Shi, Q.,Cui, Z., Williams, C.M., Wendel, B.S., Meriwther, A.I., Salazar, M.a. and Jiang, N. (2016) Direct measurment of T cell receptor affinity and sequence from naive antiviral T cells. Immunology 8 (341): 1-8. [Link]
Streptamer® Technology: Fluorescent MHC I Streptamers® and Flow Cytometry
  1. Ciaurriz, M.; Beloki, L.; Bandres, E.; Mansilla, C.; Zabalza, A.; Perez-Valderrama, E.; Lachen, M.; Ibanez, B.; Olivarria, E. and Ramirez N. (2016) Streptamer technology allows accurate and specific detection of CMV-specific HLA-A*02 CD8+ T cells by flow cytometry. Cytometry: Part B - Clinical Cytometry [Link]
  2. Cioni, M., Leboeuf., C., Comoli, P., Ginevri. F. and Hirsch, H.H. (2016) Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses. American Journal of Transplantation 16: 1193-1206 [Link]
  3. Govers, C.; Berrevoets, C.; Treffers-Westerlaken, E.; Broertjes, M. and Debets, R. (2012) Magnet-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells. Human Gene Therapy Methods 23: 213-224 [Link]
  4. Link, C.S.; Eugster, A.; Heidenreich, F.; Rücker-Braun, E.; Schmiedgen, M.; Oelschlägel, U.; Kühn, S.; Dietz, S.; Fuchs, Y.; Dahl, A.; Domingues, A.M.J.; Klesse, C.; Schmitz, M.; Ehninger, G.; Bornhäuser, M.; Schetelig, J. and Bonifacio, E. (2016) Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8+ T cell receptor repertoire following allogeneic transplantation. Clinical & Experimental Immunology 184 (3); [Link]
  5. Nauerth, M., Stemberger, C., Mohr, F., Weißbrich, B., Schiemann, M., Germeroth, L. and Busch, D.H. (2016) Flow-Cytometry-based TCR-Ligand Koff-Rate Assay for Fast Avidity Screening of even small Antigen-specifc T cell populations Ex Vivo. Cytometry, part A, 89A: 816-825. [Link]
  6. Zhang,S.-Q., Parker, P., Ma, K.Y., He, C., Shi, Q.,Cui, Z., Williams, C.M., Wendel, B.S., Meriwther, A.I., Salazar, M.a. and Jiang, N. (2016) Direct measurment of T cell receptor affinity and sequence from naive antiviral T cells. Immunology 8 (341): 1-8. [Link]
Streptamer® Technology: Magnetic MHC I Streptamers®
  1. Odendahl, M.; Grigoleit, G.U.; Bönig, H.; Neuenhahn, M.; Albrecht, J.; Anderl, F.; Germeroth, L.; Schmitz, M.; Bornhäuser, M.; Einsele, H.; Seifried, E.; Busch, D. H. and Tonn, T. (2014) Clinical-scale isolation of ‘minimally manipulated’ cytomegalovirusspecific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy 16 (9), 1245-1256 [Link]
  2. Wang, X-C., Pang, H., Schmitt, A., Freund, M., Schmitt, M. and Chen B.-A. (2013) Streptamer versus tetramer-based selection of functional cytomegalovirus-specific T cells. Journal of the Formosan Medical Association112: 338-354 [Link]
Streptamer® Technology: Purity and Yield with MHC I Streptamers®
  1. Keldermann, S.; Heemskerk, B.; Fanchi, L.; Philips, D.; Toebes, M.; Kvistborg, P.; van Buren, M.M.; van Rooij, N.; Michels, S.; Germeroth, L.; Haanen, J.B.A.G. and Schumacher N.M. (2016) Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. Eur. J. Immunology 46: 1351-1360 [Link]
  2. Odendahl, M.; Grigoleit, G.U.; Bönig, H.; Neuenhahn, M.; Albrecht, J.; Anderl, F.; Germeroth, L.; Schmitz, M.; Bornhäuser, M.; Einsele, H.; Seifried, E.; Busch, D. H. and Tonn, T. (2014) Clinical-scale isolation of ‘minimally manipulated’ cytomegalovirusspecific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy 16 (9), 1245-1256 [Link]
  3. Schober, K. and Busch D.H. (2016) TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. European Journal of Immunology 46: 1335-1339 [Link]
  4. Wang, X-C., Pang, H., Schmitt, A., Freund, M., Schmitt, M. and Chen B.-A. (2013) Streptamer versus tetramer-based selection of functional cytomegalovirus-specific T cells. Journal of the Formosan Medical Association112: 338-354 [Link]
CAR T cell enrichment
  1. Terakura, S.; Yamamoto, T.S.; Gardner, R.A.; Cameron, J.T.; Jensen, M.C. and Riddell, S.R.  (2012) Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 5 (Vol 119, No.1), 72-82 [Link]
Cell Therapy - Immuno Therapy - Personalized Therapy
  1. Bollard, C.M. and Heslop, H.E. (2016) T cells for viral infections after allogeneic hematopoietic stem cell transplant.
  2. Casalegno-Garduño, R.; Schmitt, A.; Yao, J.; Wang, X.; Xun, X.; Freund, M. and Schmitt, M. (2010) Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunology, Immunotherapy 59 (2), 195-202 [Link]
  3. Kapp, M.; Grigoleit, G.U.; Einsele, H. (2008) Immunotherapy post-transplant for infections. The EBMT Handbook Chapter 14 [PDF]
  4. Keldermann, S.; Heemskerk, B.; Fanchi, L.; Philips, D.; Toebes, M.; Kvistborg, P.; van Buren, M.M.; van Rooij, N.; Michels, S.; Germeroth, L.; Haanen, J.B.A.G. and Schumacher N.M. (2016) Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. Eur. J. Immunology 46: 1351-1360 [Link]
  5. Knabel, M., Franz, T. J., Schiemann, M., Wulf, A., Villmow, B., Schmidt., B., Bernhard, H., Wagner, H. and Busch, D. H. (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nature Medicine 8 (6), 631-637. [Link]
  6. Link, C.S.; Eugster, A.; Heidenreich, F.; Rücker-Braun, E.; Schmiedgen, M.; Oelschlägel, U.; Kühn, S.; Dietz, S.; Fuchs, Y.; Dahl, A.; Domingues, A.M.J.; Klesse, C.; Schmitz, M.; Ehninger, G.; Bornhäuser, M.; Schetelig, J. and Bonifacio, E. (2016) Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8+ T cell receptor repertoire following allogeneic transplantation. Clinical & Experimental Immunology 184 (3); [Link]
  7. Maffini, E., Giaccone, L., Festuccia, M.; Brunello, L.; Busca, A. and Bruno, B. (2016) Treatment of CMV infection after allogeneic hematopoetic stem cell transplantation. Expert Review of Hematology 9 (6): 585-596 [Link]
  8. Naik, S.; Nicholas, S.K.; Martinez, C.A.; Leen, A.M.; Hanley, P.J.; Gottschalk, S.M.; Ronney, C.M.; Hanson, I.C.; Krance, R.A.; Shpall, E.J.; Cruz, C.R.; Amrolia, P.; Lucchini, G.; Bunin, N.; Heimall, J.; Klein, O.R.; Gennery, A.R.; Slatter, M.A.; Vickers, M.A.; Orange, J.S.; Heslop, H.E.; Bollard, C.M. and Keller, M.D. (2016) Adoptive immunotherapy for promary immunodeficiency disorders with virus-specific T lymphocytes. J. Allergy Clin Immunol [Link]
  9. Nauerth, M., Weißbrich, B., Knall, R., Franz, T., Dössinger, G., Bet, J., Paszkiewicz, P. J., Pfeifer, L., Bunse, M., Uckert, W., Holtappels, R., Gillert-Marien, D., Neuenhahn, M., Krackhardt, A., Reddehase, M. J., Riddell, S. R., Busch, D. H. (2013) TCR-Ligand Koff Rate Correlates with the Protective Capacity of Antigen-Specific CD8+ T Cells for Adoptive Transfer. Sci Transl Med 5, 192ra87. [Link]
  10. Neudorfer, J., Schmidt, B., Huster, K.M., Anderl, F., Schiemann, M., Holzapfel, G., Schmidt, T., Germeroth, L., Wagner, H., Peschel, C., Busch, D. and Bernhard, H. (2007) Reversible HLA multimers (Streptamer) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. JIM 320, 119-131. [Link]
  11. O´Reilly, R.J., Prockop, S.; Hasan, A.N.; Koehne, G. and Doubrovina, E. (2016) Virus-specific T-cell banks for "off the shelf" adoptive therapy or refractory infections. Bone Marrow Transplantation (2016): 1-10. [Link]
  12. Odendahl, M.; Grigoleit, G.U.; Bönig, H.; Neuenhahn, M.; Albrecht, J.; Anderl, F.; Germeroth, L.; Schmitz, M.; Bornhäuser, M.; Einsele, H.; Seifried, E.; Busch, D. H. and Tonn, T. (2014) Clinical-scale isolation of ‘minimally manipulated’ cytomegalovirusspecific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy 16 (9), 1245-1256 [Link]
  13. Saudemont, A. and Madrigal J.A. (2016) Immunotherapy after hematopoietic stem cell transplantation using umbilical cord blood-derived products. Cancer Immunolofy,Immunotherapy [Link]
  14. Schmitt A., Tonn T., Busch D. H., Grigoleit G. U., Einsele H., Odendahl M., Germeroth L., Ringhoffer M., Ringhoffer S., Wiesneth M., Greiner J., Michel D., Mertens T., Rojewski M., Marx M., von Harsdorf S., Döhner H., Seifried E., Bunjes D. and Schmitt M. (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion, Volume 51, pp. 591-599. 2 (3): 074-078 [Link]
  15. Schober, K. and Busch D.H. (2016) TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. European Journal of Immunology 46: 1335-1339 [Link]
  16. Stemberger, C.; Graef, P.; Odendahl, M.; Albrecht, J.; Dössinger, G., Anderl, F., Buchholz, V. R.; Gasteiger, G., Schiemann, M.; Grigoleit, G. U.; Schuster, F. R.; Borkhardt, A.; Versluys, B.; Tonn, T.; Seifried, E., Einsele, H., Germeroth, L.; Busch, D. H. and Neuenhahn, M. (2014) Lowest numbers of primary CD8+ T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood 124 (4): 628-637 [Link]
  17. Wang, X., Schmitt, A., Chen, B., Xu, X., Mani, J., Linnebacher, M., Freund, M. and Schmitt, M. (2010) Streptamer-based selection of WT1-specific CD8+ T cells for specific donor lymphocyte infusions. Experimental Hematology 38, 1066-1073. [Link]
CD8+ T cell development
  1. Fröhlich, M.; Gogishvili, T.; Langenhorst, D., Lühder, F. and Hünig, T. (2016) Interrupting CD28 costimulation before antigen rechallenge affects CD8+ T-cell expansion and effector functions during secondary response in mice. European Journal of Immunology 2016.00: 1-12 [Link]
  2. Gattinoni, L. (2014) Memory T Cells Officially Join the Stem Cell Club. Immunity 41, 7–9 [Link]
  3. Graef, P.; Buchholz, V.R.; Stemberger, C.; Flossdorf, M.; Henkel, L.; Schiemann, M.; Drexler, I.; Höfer, T.; Riddell, S. R. and Busch, D. H. (2014) Serial Transfer of Single-Cell-Derived Immunocompetence Reveals Stemness of CD8+ Central Memory T Cells. Immunity 41, 116–126 [Link]
  4. Stemberger, C.; Huster, K. M.; Koffler, M.; Anderl, F.; Schiemann, M.; Wagner, H.; and Busch, D. H. (2007) A Single naive CD8+ T Cell precursor can develop into diverse effector and memory subsets. Immunity 27 (6): 985-997 [Link]
  5. Stemberger, C.; Neuenhahn, M.; Buchholz, V. R. and Busch, D. H. (2007) Origin of CD8+ effector and memory T cell subsets. Cellular and Molecular Immunology 4 (6): 399-405 [Link]
  6. Stemberger, C.; Neuenhahn, M.; Gebhardt, F. E.; Schiemann, M.; Buchholz, V. R. and Busch, D.H. (2009) Stem cell-like plasticity of naive and distinct memory CD8+ T cell subsets. Seminars in Immunology 21: 62-68 [Link]
Clinical Monitoring
  1. Ciaurriz, M.; Beloki, L.; Bandres, E.; Mansilla, C.; Zabalza, A.; Perez-Valderrama, E.; Lachen, M.; Ibanez, B.; Olivarria, E. and Ramirez N. (2016) Streptamer technology allows accurate and specific detection of CMV-specific HLA-A*02 CD8+ T cells by flow cytometry. Cytometry: Part B - Clinical Cytometry [Link]
Cord Blood
  1. Saudemont, A. and Madrigal J.A. (2016) Immunotherapy after hematopoietic stem cell transplantation using umbilical cord blood-derived products. Cancer Immunolofy,Immunotherapy [Link]
Dendritic Cells
  1. Bauer, C.; Dauer, M.; Schnurr, M.; Jauch, K.; Ruettinger, D.; Conrad,C.; Bruns, C.; Emmerich, B.; Endres, S. and Eigler, A. (2008) Vaccination therapy of pancreatic carcinoma patients with autologous, tumor-lysate pulsed dendritic cells: results of a phase II study. Journal of Clinical Oncology 26 (15S): 2008-3069 [Link]
  2. Dauer, M.; Lam, V.; Arnold, H.; Junkmann, J.; Kiefl, R.; Bauer, C.; Schnurr, M.; Endres, S.; and Eigler, A. (2008) Combined use of toll-like receptor agonists and prostaglandin E2 in the FastDC model: Rapid generation of human monocyte-derived dendritic cells capable of migration and IL-12p70 production. Journal of Immunological Methods 337 (2): 97-105 [Link]
  3. Dauer, M.; Schad, K.; Herten, J.; Junkmann, J.; Bauer, C.; Kiefl, R.; Endres, S. and Eigler, A. (2005) FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells. Journal of Immunological Methods 302: 145-155 [Link]
  4. Dauer, M.; Schad, K.; Junkmann, J.; Bauer, C.; Herten, J.; Kiefl, R.; Schnurr, M.; Endres, S.; and Eigler, A. (2006) IFN-α promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4. Journal of Leukocyte Biology 80: 278-286 [Link] [PDF]
Graft-Versus-Host
  1. Link, C.S.; Eugster, A.; Heidenreich, F.; Rücker-Braun, E.; Schmiedgen, M.; Oelschlägel, U.; Kühn, S.; Dietz, S.; Fuchs, Y.; Dahl, A.; Domingues, A.M.J.; Klesse, C.; Schmitz, M.; Ehninger, G.; Bornhäuser, M.; Schetelig, J. and Bonifacio, E. (2016) Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8+ T cell receptor repertoire following allogeneic transplantation. Clinical & Experimental Immunology 184 (3); [Link]
  2. Munker, R.; Schmid, C.; Madrigal, J.A. and Kolb, H.J. (2004) An update on graft-versus-host and graft-versus leukemia reactions: a summary of the sixth International Symposium held in Schloss Ellmau, Germany, January 22- 24, 2004. Bone Marrow Transplantation 34: 767-780 [Link] [PDF]
  3. Schmitt A., Tonn T., Busch D. H., Grigoleit G. U., Einsele H., Odendahl M., Germeroth L., Ringhoffer M., Ringhoffer S., Wiesneth M., Greiner J., Michel D., Mertens T., Rojewski M., Marx M., von Harsdorf S., Döhner H., Seifried E., Bunjes D. and Schmitt M. (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion, Volume 51, pp. 591-599. 2 (3): 074-078 [Link]
  4. Wang, X., Schmitt, A., Chen, B., Xu, X., Mani, J., Linnebacher, M., Freund, M. and Schmitt, M. (2010) Streptamer-based selection of WT1-specific CD8+ T cells for specific donor lymphocyte infusions. Experimental Hematology 38, 1066-1073. [Link]
Immune Status
  1. Raeiszadeh, M.; Kopycinski, J.; Paston, S.J.; Diss, T.; Lowdell, M.; Hardy, G.A.D.; Hislop, A.D.; Workman, S.; Dodi, A.; Emery, V. and Webster, A.D. (2006) The T cell response to persistent herpes virus infections in common variable immunodeficiency. Clinical and Experimental Immunology 146 (2): 234–242 [Link] [PDF]
  2. Yao, J., Bechter, C., Wiesneth, M., Härter, G., Götz, M., Germeroth, L., Guillaume, P., Hasan, F., von Harsdorf, S., Mertens, T., Michel, D., Döhner, H., Bunjes, D., Schmitt., M. and Schmitt, A. (2008) Multimer staining of cytomegalovirus phosphoprotein 65-specific T cells for diagnosis and therapeutic purposes: A comparative study. CID 46, e96-105. [Link]
Next Generation Sequencing
  1. Link, C.S.; Eugster, A.; Heidenreich, F.; Rücker-Braun, E.; Schmiedgen, M.; Oelschlägel, U.; Kühn, S.; Dietz, S.; Fuchs, Y.; Dahl, A.; Domingues, A.M.J.; Klesse, C.; Schmitz, M.; Ehninger, G.; Bornhäuser, M.; Schetelig, J. and Bonifacio, E. (2016) Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8+ T cell receptor repertoire following allogeneic transplantation. Clinical & Experimental Immunology 184 (3); [Link]
Signalling
  1. Lindquist, J.A. and Schraven, B. (2007) Sparking signals kinases as molecular signal transducers and pharmacological drug targets in inflammation. Ernst Schering Foundation Symposium Proceedings 3: 43-61 [Link]
  2. Wang, X.; Simeoni, L.; Lindquist, J.A.; Saez-Rodriguez, J.; Ambach, A.; Gilles, E.D.; Kliche, S.;and Schraven, B. (2008) Dynamics of proximal signaling events after TCR/CD8-mediated induction of proliferation or apoptosis in mature CD8+ T cells. The Journal of Immunology 180: 6703 -6712 [Link] [PDF]
Solid Organ Transplantation
  1. Cioni, M., Leboeuf., C., Comoli, P., Ginevri. F. and Hirsch, H.H. (2016) Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses. American Journal of Transplantation 16: 1193-1206 [Link]
T cell expansion
  1. Fröhlich, M.; Gogishvili, T.; Langenhorst, D., Lühder, F. and Hünig, T. (2016) Interrupting CD28 costimulation before antigen rechallenge affects CD8+ T-cell expansion and effector functions during secondary response in mice. European Journal of Immunology 2016.00: 1-12 [Link]
T cell receptor affinity
  1. Nauerth, M., Weißbrich, B., Knall, R., Franz, T., Dössinger, G., Bet, J., Paszkiewicz, P. J., Pfeifer, L., Bunse, M., Uckert, W., Holtappels, R., Gillert-Marien, D., Neuenhahn, M., Krackhardt, A., Reddehase, M. J., Riddell, S. R., Busch, D. H. (2013) TCR-Ligand Koff Rate Correlates with the Protective Capacity of Antigen-Specific CD8+ T Cells for Adoptive Transfer. Sci Transl Med 5, 192ra87. [Link]
  2. Nauerth, M., Stemberger, C., Mohr, F., Weißbrich, B., Schiemann, M., Germeroth, L. and Busch, D.H. (2016) Flow-Cytometry-based TCR-Ligand Koff-Rate Assay for Fast Avidity Screening of even small Antigen-specifc T cell populations Ex Vivo. Cytometry, part A, 89A: 816-825. [Link]
  3. Nauerth, M.,Wing, K., Körner, H. and Busch, D.H. (2016) Relevance of the T cell Receptor-Ligand Avidity for Immunity to Infection. Journal of Microbial and Biochemical Technology 8 (2): 131-153 [Link]
  4. Weissbrich B., Nauerth, M. and Busch, D.H. (2013) New assay for the identification of T cells with optimal avidity. OncoImmunology 2:10 [Link]
  5. Zhang, S.-Q., Parker, P., Ma, K.Y., He, C., Shi, Q.,Cui, Z., Williams, C.M., Wendel, B.S., Meriwther, A.I., Salazar, M.a. and Jiang, N. (2016) Direct measurment of T cell receptor affinity and sequence from naive antiviral T cells. Immunology 8 (341): 1-8. [Link]
TIL - Tumor infiltrating Lymphocyte
  1. Schober, K., Busch, D. H. (2016) TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. European Journal of Immunology 46 (6): 1335-1339; DOI: 10.1002/eji.201646436. [Link]
  2. Kelderman, S., Heemskerk, B., Fanchi, L., Philips, D., Toebes, M., Kvistborg, P., van Buuren, M.M., van Rooij, N., Michels, S., Germeroth, L., Haanen, J. B. A. G. and Schumacher, N. M. (2016) Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. European Journal of Immunology 46 (6): 1351-1360; DOI: 10.1002/eji.201545849 [Link]
Vaccines
  1. Bauer, C.; Dauer, M.; Schnurr, M.; Jauch, K.; Ruettinger, D.; Conrad,C.; Bruns, C.; Emmerich, B.; Endres, S. and Eigler, A. (2008) Vaccination therapy of pancreatic carcinoma patients with autologous, tumor-lysate pulsed dendritic cells: results of a phase II study. Journal of Clinical Oncology 26 (15S): 2008-3069 [Link]
  2. Bessa, J.; Schmitz, N.; Hinton, H. J.; Schwarz, K.; Jegerlehner, A. and Bachmann, M. F. (2008) Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. European Journal of Immunology 38 (1): 114-26 [Link]
  3. Schmitt, M.; Casalegno-Garduño, R.; Xu, X. and Schmitt, A. (2009) Peptide vaccines for patients with acute myeloid leukemia: future perspective - What's next? Expert Review of Vaccines 8 (10): 1415-1425 [Link]