In vitro Standard Probe for Fluorescence Cross-correlation Spectroscopy (FCCS)

A comprehensive manual

Last day of revision
December 2010

Version PR33-0001

IBA Headquarters
IBA GmbH
Rudolf-Wissell-Str. 28
D-37079 Göttingen
Germany
Tel: +49 (0) 551-50672-0
Fax: +49 (0) 551-50672-181
info@iba-go.com
www.oligo-specialist.com

IBA US Distribution Center
1328 Ashby Road, Olivette, MO 63132, USA
Tel. 1-877-IBA-GmbH (1-877-422-4624)
Fax 1-888-531-6813
info@iba-go.com
www.oligo-specialist.com

488/633 standard: order# 5-0000-504
488/543 standard: order# 5-0000-604
1. Introduction

1.1 General Considerations

Fluorescence correlation spectroscopy (FCS) gives information about processes, which generate temporal fluctuations of the measured fluorescence in a sample of fluorescent molecules. In the easiest case, fluctuations are caused by the Brownian motion of fluorescent molecules in the observation volume giving information about translational diffusion coefficients.

Since the introduction of FCS in the 1970s \(^{1-3}\), it has also been used to determine rotational diffusion coefficients, kinetic rate constants, aggregation and molecular weights \(^{4-12}\). With the implementation of confocal optics and the development of commercial devices, FCS has found a broad practice in biological questions like binding states of biomolecules, enzyme activities up to cellular applications. Unfortunately, detecting binding events of biomolecules by autocorrelation analysis lacks high sensitivity due to dependence on decelerated translational diffusion by increase of the molecular mass.

A significant extension of FCS is the dual-colour cross-correlation analysis (FCCS) \(^{13-20}\), which is based on the simultaneous detection of two spectrally separable colours by splitting the emitted fluorescence into two distinct detection channels using adequate dichroic mirrors and filters.

Cross-correlation analysis implies the time correlation of the fluorescent signals in the two detection channels with each other delivering information about molecules which carry both fluorescent dyes. FCCS has been used in various binding studies of biomolecules in vitro and in vivo.

With the IBA In Vitro Standard Probe for Fluorescence Cross-correlation Spectroscopy it is now possible to verify the daily adjustment of the optical setup for fluorescence cross-correlation measurements.

Necessary Materials for Measurements

2. Starting point methods

2.1 General considerations

The instructions given below represent typical protocols that were applied successfully in vitro, in solution using different setups for fluorescence cross-correlation spectroscopy. Optimal conditions depend essentially on accurate adjustment of the confocal detection system. Thus, an optimum may be found in overlap of the laser foci and the respective detection foci, and additionally overlap of the two distinct detection foci. It may be helpful to adjust the optical setup for maximal cross-talk to the second detection channel using the solely green labelled sample excited only by the green laser, at the expense of the overlap of laser and detection foci of the second channel (especially recommended for older Zeiss Confocor systems).
2.2 Standard protocols for in vitro cross-correlation measurements

Materials and important notes

- 1 vial containing 50 µl double labeled Standard
- 2 vials containing 50 µl single labeled standard (1st and 2nd channel)
- Choose appropriate beam path for the FCCS 488/633 or 488/543 standard probe with excitation wavelengths 488/633 or 488/543, respectively.
- Vortex the cross-correlation standard probe before use.
- Store the cross-correlation standard probe at 4°C or on ice.
- Do not reuse aliquots of the standard probe after cross-correlation measurements.
- Verify the obtained cross-correlation signal by checking the channel separation of the optical setup for cross-talk using the single labelled samples obtained by IBA.

Standard protocol for cross-correlation measurements in vitro

1. Adjust the optical setup for optimal overlap of the two detection foci.
2. Dilute the cross-correlation standard probe 1:10 with d.d. water, place 20 µl on a cover slip and leave it for 1 min.
3. Perform cross-correlation measurements.
4. Adjustment of the optical setup for detection of cross-correlation may be disordered due to temperature variations. Check the proper adjustment by performing cross-correlation measurements using a new aliquot of the cross-correlation standard probe every few hours.

![Diagram 1: Exemplary cross-correlation measurement using the IBA In Vitro FCCS Standard Probe 488/633. The cross-correlation signal mainly depends on proper adjustment of the optical setup.](image-url)
Related products

In Vivo Standard Probe for Fluorescence Cross-correlation Spectroscopy

488/633 in vivo standard: order# 5-0000-505
488/543 in vivo standard: order# 5-0000-605
References

