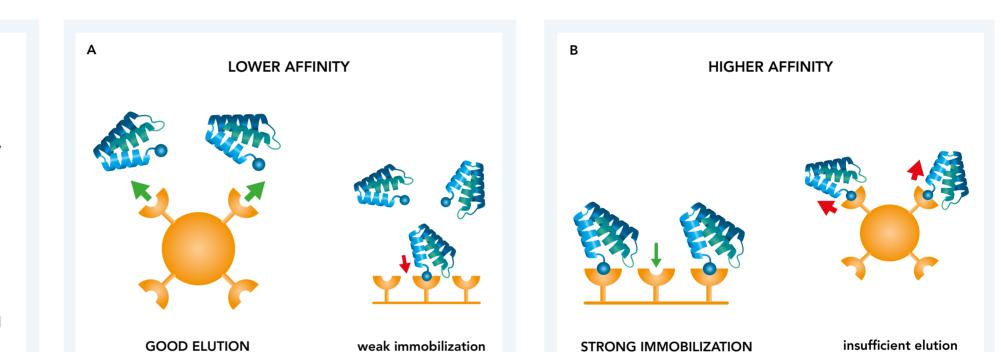
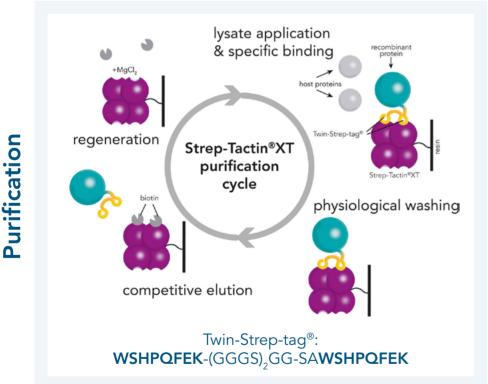


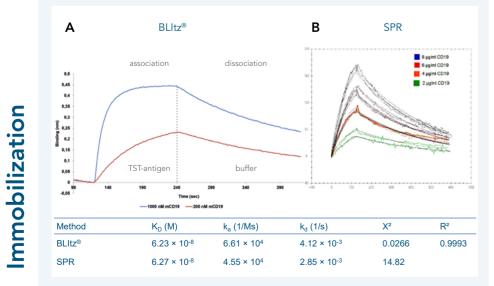
The Strep-tag[®] technology – Outstanding performance from purification to analytic applications

Dennis Karthaus¹, Franziska Hartung¹, Jennifer Koch¹, Sandra König¹, Marit Strotbek¹, Antje Ulrich¹, Anke Rattenholl², Kai Stute², Peter Jahnmatz³

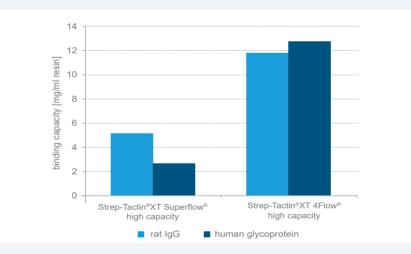
¹ IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Goettingen, Germany
² FH-Bielefeld, Fachbereich Ingenieurwissenschaften Mathematik, Apparative Biotechnologie, Universitätstr. 27, 33615, Bielefeld, Germany
³ Mabtech AB, Augustendalstorget 9, 131 52 Nacka Strand, Sweden

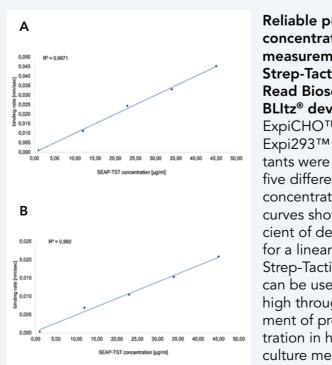

The Strep-tag[®] technology is a versatile protein purification, detection and immobilization platform. It is well known for its outstanding performance delivering exceptionally pure proteins. The Strep-Tactin[®]XT provides a remarkable binding affinity in low pM ranges while maintaining its binding reversibility and mild recovery of immobilized proteins. This allows protein purification at high yields and purity that outperforms His-tag purification (e.g. from Expi supernatants). Furthermore, it fulfills the high demands of analytical applications such as SPR or BLI.

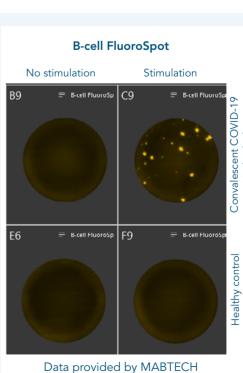

AFFINITY – A COMPROMISE BETWEEN PURIFICATION AND ASSAY


The affinity of a tag to its ligand is an important property depending on the application.

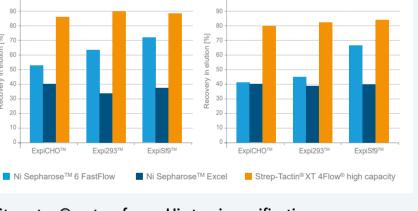
(A) Protein purification: The affinity of the tag should allow an efficient elution from its ligand.


(B) Analytic applications (immobilization): The tag must have an affinity that is high enough to bind efficiently to the ligand - even under challenging conditions




Binding kinetic of an anti-mouse CD19 nanobody to mouse CD19 receptor. Kinetic was determined with BLItz[®] (**A**) and SPR (**B**) using Strep-Tactin[®]XT coated chips or biosensors. The nanobody and the antigen contained a Twin-Strep-tag[®].

Strep-Tactin®XT 4Flow® – Higher capacity for large proteins. Twin-Strep-tag® proteins of different size (rat IgG, 150.2 kDa and human glycoprotein, 129 kDa) were spiked in buffer W and purified with either Strep-Tactin®XT Superflow® high capacity or Strep-Tactin®XT 4Flow® high capacity. Purification with Strep-Tactin®XT 4Flow® high capacity provides higher yields for both proteins.



Reliable protein concentration measurements with Strep-Tactin[®]XT Dip and Read Biosensors on a BLItz[®] device. ExpiCHO[™] (A) and Expi293™ (B) supernatants were spiked with five different SEAP-TST concentrations. Calibration curves show a high coefficient of determination (R²) for a linear fit. Therefore, Strep-Tactin[®]XT Biosensors can be used for reliable high throughput measurement of protein concentration in high density cell culture media like Expi.

Data provided by MABTECH (www.mabtech.com)

Antibody detection – Strep-Tactin[®]XT for FluoroSpot. To detect specific IgGs against a receptor binding domain protein (RBD) from SARS-CoV2, immobilized anti-human IgG antibodies are used to capture RBD specific IgGs secreted by B cells, derived from convalescent COVID-19 individuals. The RBD specific IgG, in turn, binds the Twin-Streptagged RBD, which can be detected afterwards with fluorescent labeled Strep-Tactin[®]XT.

120 CV sample load

Strep-tag® outperforms His-tag in purification from Expi supernatants. A protein was purified

60 CV sample load

with Ni Sepharose[™] 6 Fast Flow, Ni Sepharose[™] Excel, or Strep-Tactin[®]XT 4Flow[®] high capacity from Expi293[™], Expi-CHO[™] and ExpiSf9[™]. Independent from different sample loading volumes, the highest recovery was achieved with Strep-Tactin[®]XT 4Flow[®] high capacity.